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12.0 POPULATION MODELS
12.1 Introduction

A tremendous amount of work on ecological models has been published
in the last few decades, including a number of books on the subject, and a
journal, Ecological Modeling. The focus here will be on models that may be
useful in collecting and assessing field data on actual populations. These may
range from quite simple equations to complicated computer programs. Almost
any kind of analysis depends on a model of some sort. Many scientists use
various statistical tests without stopping to consider that each such test
depends on a formal model.

The simple linear regression model, y = a + bx, serves to assess one
possible relationship between paired observations. Fitting a regression model
is usually (but not necessarily) done with the least-squares technique. The
fitting process depends on the assumption of a model (linear in this case). If
least-squares is used in fitting, it brings in the further assumption that the x-
values are known exactly, so that the minimizing process involved in fitting
deals only with variability in the y-variable (independent variable). For
linear regression, this amounts to minimizing the quantity:

                                                               S = Σ [y
i
 - (a + bxi)]2

                                                                     i
with respect to the coefficients (parameters) a and b.

Going beyond the fitting process to do statistical tests of various kinds
requires some further assumptions. For linear regression, the main such
assumption is that the model is actually of the form:

                                                       yi = α  + βxi + ei                                                    (12.1)

where the ei are randomly drawn from a normal distribution with mean zero

and a constant variance, σ 2 . We thus have a sequence of events in using
models. First one settles on the mathematical form of the model, then on the
method of fitting, and finally methods of analysis are considered, i. e., finding
out whether the parameters are "significant" and how important they are in
the process being studied.

Many population models use time as the independent variable, so that
the variation in fitting can reasonably be assumed to be associated solely (or
mainly) with the dependent variable. Consequently, least-squares is often an
appropriate fitting technique. Unfortunately, many of the models that seem to
be useful in ecology are fairly complicated. Consequently, most of the usual
statistical analysis techniques can only be validly applied in considering
components of the model, and become very doubtful indeed if applied to model
outcomes.

This makes the relatively new technique of bootstrapping appear very
promising for modelling, as it can be applied to very complex systems. One
such application appears in Chapter 11, where bootstrapping and the delta
method were applied to a complex model, the Lotka-Leslie model. Because the
model has to be solved iteritively, least-squares is no help. Efforts to deal with
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the underlying model mathematically depend on the calculus of complex
variables and thus become difficult for most biologists. Bootstrapping,
however, is quite straightforward and gives results supported by realistic-
seeming stochastic models of actual populations.

12.2 Curve-fitting models

A natural extension of the simple linear regression model is to fit more
complex curves. Multiple regression offers a simple extension of the linear
regression model (eq. 12.1), taking the form:

                                      yi = bo + b1x1 + b2x2 + ... bkxk + ei                                  (12.2)

where the xi  are several (k) independent variables. Fitting is again readily
done by least-squares. Many texts now give the relevant equations in matrix
form. Mathematically and computationally speaking, a large number of
independent variables can be used, but this is where a lot of biologists get into
serious trouble without realizing what they are doing. Many of the available
statistical packages wil l not only f it multiple regressions with many
independent variables, but they will also "decide" which of the variables are
"statistically significant" via stepwise regression. If fits with the observed
variables (x1, x2, etc.) aren't satisfactory, one can try various transformations,

e.g., x12, log x2, 1/x3, etc., looking for a good fit.

The problem with this approach is that it may be difficult to justify even
the simplest multiple regression model for biological data. Very often we can
be quite sure that linear models are not suitable for biological relationships.
Hence experimenting with combinations of variables until one gets a good fit
should only be used for predicting a future y-value and then on ly   if the model
can be proof-tested on an independent data set. Otherwise such predictions
may be an exercise in self-delusion.

The most frequently used model in population studies is undoubtedly the
exponential function:
                                                              y = aebx                                                         (12.3)

where a and b are again parameters. Usually a = N0, the initial population size,
y = Nt, current population size, and x = t, time of observations. The exponential
function is non-linear, i.e., the variables are not related by simple additions
and multiplications as in eqs. (12.1) and (12.2).

There are two ways to fit eq. (12.3). One is by non-linear leas t -squares
which requires a computer fitting routine, now found in most statistical
packages. Using that approach assumes that the underlying model is:

                                                    yi  = aebxi + ei                                                       (12.4)

i.e., that the error terms are additive. The alternative is to take natural
logarithms of the yi , giving the log-linear regression model:

                                                    loge yi = loge a + bxi                                             (12.5)
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which is readily fitted by simple linear regression. To justify eq. (12.5), one
needs to write the underlying model as:

                                                            yi = aebxi ei                                                    (12.6)

thus assuming that the errors are multiplicative. This appears to be the
appropriate model for population data. If one fits an exponential model to a
sequence of observations of a population changing at a constant rate, and then
examines the deviations of observed points from the fitted curve:

                                                   Deviations = yi - N0erti                                        (12.7)

it usually turns out that the deviations increase in magnitude with time.
Deviations from the log-linear model tend to be independent of time, giving a
reasonably constant "variance about regression", and thus conforming
approximately to the simple linear regression model requirement of constant
v a r i a n c e .

The log-transformed approach using simple linear regression (log-
linear regression) is thus to be preferred. This disturbs some workers, who
prefer to think in terms of the observed population size. An obvious answer to
that complaint is just to present the data in terms of the original
measurements, i.e., numbers or counts, rather than the logarithms of those
data. Doing so may draw criticism from statisticians, who point out that
"transforming back" can introduce bias in estimates. However, the over-
ridingly important result from a log-linear analysis of population trend data is
ordinarily the slope, which estimates the rate of change, r, directly (and thus
does not need to be transformed back in any case). The other parameter in a
fitted equation (N0) seldom gets much attention, regardless.

In many instances, the basic data may be counts, rather than actual
population estimates, so it makes good sense to stay on the logarithmic scale
and graph the fitted relationship as a straight line. An advantage, as
mentioned above, is that deviations from the fitted regression line tend to be
more uniform over time, supporting the notion that log-linear regression
gives a useful estimate of the rate of change.

One may thus be led to suppose that it will be acceptable to go ahead and
obtain confidence limits for r in the usual manner for linear regression, and
this seems to be a rather common practice. Unfortunately, there is reason to
doubt that such limits will provide the degree of "confidence" one would
expect. In simple linear regression 95% confidence limits on the slope can be
interpreted to mean essentially that if we repeat the process generating the
observed data many times, then 95% of the resulting estimates of r should fall
within the confidence limits obtained in the first place. Hence, it might be
supposed that if it were possible to observe many populations growing under
conditions identical to the one population studied, about 95% should show
values of r within the calculated confidence limits.

The problem is that normal theory confidence limits are based on the
assumption that the "errors", ei , of eqs. (12.1) and (12.5) are randomly and
i ndependen t l y   drawn from a normal distribution. For population growth, this
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would mean that each increment of growth would be determined
independently of previous increments. However, real populations, like real
organisms, do not grow that way. A chance fluctuation early in time
influences future population size. Consequently, a population experiencing,
by chance, slow growth initially may have a trajectory appreciably below that
of a population that happens to "get a good start".

The consequences of this phenomenon appear quite surprising.
Eberhardt and Simmons (1992) used stochastic models of population growth for
several species of large mammals to study behavior of the confidence limits
generated from log-linear regressions on such data. Their results were
expressed in terms of "coverage" of calculated confidence limits. That is,
confidence limits calculated for log-linear regressions on each of 1,000 runs of
a given population model were examined to see whether they included the true
rate of population change expected from the population parameters used.

If confidence limits from log-linear regression applied to population
growth data behaved as for ordinary linear regression, the anticipated
coverage would be 95%. In the simulations, it was about 60%. This raises doubts
about confidence limits for the rate of growth determined from log-linear
regression. In practice, of course, other factors influence the observed
variability, including sampling errors of the measurements of population size
and  year-to-year fluctuations of the actual rate of growth associated with
environmental condit ions.

The simulations of Eberhardt and Simmons (1992) did show that an
accurate estimate of the rate of change can be obtained from trend data, so that
estimating a rate of change from trend data complements estimates from
reproductive and survival data very nicely (Fig. 11.12). The main problem is
one of how to make comparisons between estimates from the two sources. Some
unpubl ished s imulat ions indicate that  coverage f rom bootst rapping
confidence limits based on the Lotka-Leslie model is very close to the expected
95%, so that, if there are no biases in the survival and reproductive estimates
used in generating the estimate of λ , the confidence limits from bootstrapping
provide a useful tool for further analysis.

It should be noted that there is a theoretical answer to the problem of
poor coverage of confidence limits from loglinear regression on population
trend data, but one that is impractical for population studies. The approach is
that taken in studies of growth of individual organisms, where the same
problem exists. In that case, one simply observes growth rates for a number of
individuals, and confidence limits for the mean growth rate are based on the
rates for the individuals. However, it is seldom feasible to study a number of
independent populations under the same conditions, so using "replications"
isn't a useful solution.

One further outcome of the simulations of Eberhardt and Simmons
(1992) is useful. This is that confidence limits on projections of given
populations a few years into the future did give acceptable coverage. It is thus
evident that trend data can give useful estimates of rates of change, and
provide worthwhile confidence limits on short-term projections of population
size. The implication then is that a record of trend data provides useful
information on variability for the observed population trajectory, but not for
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other trajectories that might arise from the underlying survival and
reproductive rates.

Consequently, if we have estimates of rate of change from reproductive
and survival data and from trend data, it appears worthwhile to ask whether
the estimate from trend data can be considered to be one realization of the
many possible population trajectories that might arise by chance from the
observed reproductive and survival data. One approach is to do a t-test. A
difficulty is that the variance of the trend data estimate can be expected to be
different from that obtained from reproductive and survival data. This leads to
what statisticians know as the Behrens-Fisher problem. An approach using
bootstrapping has been suggested by Efron and Tibishirani (1993).

12.3 Some growth curves

A number of equations other than the exponential have been used to
represent the growth of populations, usually for laboratory studies or in the
case of introduction into new habitat or after substantial reductions in
numbers.  Most of the curves are "sigmoid" or S-shaped with the initial stage
characterized by nearly exponential growth, followed by a gradual tapering-
off towards a constant, or asymptotic level.  The curves to be described here
are all deterministic, that is, do not take into account chance or stochastic
fluctuations in numbers. Stochastic versions are available for several of the
curves, but the details are mathematically complex.

All of these curves are also applicable to the study of growth of
individual organisms, and several were originally developed for that purpose.
Thus we may take the dependent variable, y, as representing either population
size or the weight of an individual or average weight of a group of individuals,
all presumably being of the same age.  Since the curves are all continuous in
form, we are effectively supposing the population to be large enough that it
doesn't matter whether we use a continuous or discrete representation.  This is
also implied by the use of a deterministic as opposed to a stochastic model.

Since there are a substantial number of growth curves available, one
needs some criteria for choice in particular circumstances.  This is a problem
that is not resolved.  Both the growth of populations and that of individual
organisms are sufficiently complex and variable to prevent a solution on
purely theoretical grounds, and the choice is often one of convenience for the
needs of the moment.  Although theoretical bases are available for most of the
curves, discussion here will largely be limited to one simple criterion - the
rate of change per unit of time.  Thus for exponential growth the rate of
change is a constant fraction of y, that is, for a small increment of time ( ∆ t )
the incremental change in y (∆ y) is proportional to y:

                                                                    
 ∆ y
 ∆ t    = ry

so that, for population growth, this can be described as the difference between
births, b(or recruits) per head and loss rate (d), giving

                                                          
∆y
∆t   = by - dy = (b-d)y = ry



                                                                                                                       12.6

If a continuous variable is involved, the differential notation is normally used,
i.e.,

                                                                        
d y
d t    = ry

It may be more convenient to study a given set of data in terms of a relative
rate of change,

                                                                        
d y
y d t  = r

so that one examines the rate of change divided by the current size.  In
examining a given set of data, one might thus decide on a convenient (but
short) time interval, ∆ t, and determine whether the corresponding changes,
∆ y, are nearly constant fractions of current size (y).  Of course the assumption
of exponential growth can be examined much more readily by simply taking
logarithms (or plotting on "log-log" paper), but such a simple approach is not
available for many of the other growth curves. Such curves can often be fitted
by non-linear least-squares (available in a number of commercial computer
“packages”). When these routines fail to converge (or give dubious results), it
is worthwhile to start over with guesses as to the parameters. Often the first
derivatives given below can be used to obtain such starting values.

The remainder of this section will be devoted to a listing of a number of
growth curves, the first derivative (dy/dt) and a few remarks.  Most of the
curves can be written in several forms.  Those used here are largely as given
by Grosenbaugh (1965). An extensive set of models for analysis of fish growth
and survivorship is available in Schnute and Richards (1990). All of the curves
described here (excepting, of course, the exponential) have an upper
asymptote (denoted by A) which is approached as t becomes very large.  All but
one are sigmoid, or S-shaped. The exception is sometimes known as the
"monomolecular" curve, and has the equation:

                                                       y = A(1 - e-Bt)                                                    (12.8)

Replacing e-Bt  by the first two terms in the series expansion (e-Bt =
.
 1-Bt) gives

an approximation for small values of t:

                                                               y =
.
  Abt

which shows that the curve starts out as nearly a straight line.  As t becomes
large, y gradually approaches A, so we have something like an inverted J, or a
curve that is concave downwards.  The first derivative (rate of change) can be
written as:

                                                            
d y
d t    =  B(A - y)                                                (12.9)

Thus when y is small the rate of change is nearly constant, indicating a
straight line as suggested above.  As y increases the slope diminishes, and
ultimately reaches zero at the asymptote.  For a given set of data, an
investigator could calculate ∆y for some small fixed  ∆ t and expect that a plot of
∆ y against y would yield approximately a straight line:

                                                              ∆y =
.
  BA – By

and thus suggest the applicability of equation (12.8) as a model.  In this case,
however, the general shape of the curve should also give a first indication as
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to its suitability.  This curve has been used to represent the upper portion of
growth curves, by simply disregarding the early stages of growth.  One way to
do this is to write the curve as:
                                                          y = A(1 - e-Bt) + C

so that when t = 0, y = C where C is the first value to be considered. Eq. (12.8) is
also often useful if one wishes to fit curves to reproductive data as shown in
Fig. 11.4. Sometimes it is possible to fit eq.(11.8) directly with non-linear least-
squares, but this approach often will fail due to the number of parameters that
need to be estimated. This is especially true when there is little data on
senescence, as usually is the case. One may then attempt to approximate the
curve in sections. Eq. (12.8) represents the left-hand side of the curves (Fig.
11.4), except that a constant (c) appears in eq. (11.8). This constant effectively
represents the age at which an appreciable amount of reproduction is first
observed (e.g., age 4 in the fur seal data of Fig. 11.4). One can thus obtain a
useful guess at c and take a as the reproductive rate observed for prime-age
individuals, and then fit the left-hand portion of the curve by non-linear
least -squares.

Equation (12.9) indicates that the rate of change depends on y (and the
constants A and B) but not on t -- that is growth depends only on the size
already achieved, and not on time.  A curve that brings in a dependence on
time also, is named after the mathematician Gauss, has the following form:

                                                            y = A(1 - e-bt2)                                            (12.10)

and has the first derivative:

                                                              
d y
d t     =  2bt(A - y)                                        (12.11)

so that we have the rate of change again decreasing in proportion to size of y
(just as in equation (12.9)), but there is an opposite effect due to the value of t.

Equations (12.8) and (12.10) may also be written with another constant
(C) as multiplier for the exponential term:

                                                                  y = A(1 - Ce-bt)

                                                                 y = A(1 - Ce-bt2)

which provides more flexibility in fitting data, for which the price paid is less
assurance that the particular curve considered is somehow unique or
"appropriate".  In neither case does C appear in the first derivative.

The logistic (Verhulst) curve has probably been more widely used t h a n
any of the others.  The equation is:

                                                                 y = 
A

1 + Ce-B t                                           (12.12) 

and the derivative is:

                                                                  
d y
d t    =  y (A - y)                                    (12.13)
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which shows again a dependence on the approach to the asymptote through
(A- y), but now modified by the value of y.  A plot of  ∆ y/∆ t against y will now
give a curve (a quadratic or second degree curve):

                                                                
∆y
∆t     = By - 

B
A  y2

In fisheries management, an important concept is that of a stock-recruitment
curve, which compares the number of recruits to a fishery with the existing
stock. These curves can be considered as growth curves. Because recruitment
is often an annual or generational event, the underlying equations can best
be expressed as difference equations, rather than the differential equations as
in the other growth curves described here. Two stock-recruitment curves
have been widely used, one being the Beverton and Holt curve (Beverton and
Holt 1957) and the second due to W.E. Ricker, who described both curves in
detail in his 1975 book (Ricker 1975). It can be shown that the Beverton and
Holt curve can be written as a difference equation form of the logistic curve
{eq. (12.12)] and that the Ricker curve approaches the Beverton and Holt curve
under limiting conditions (Eberhardt 1977c). The Ricker curve is nonetheless
different from the logistic and is worth separate l isting here, being
conveniently written as:
                                                        Nt+1 = ANte-BNt

where Nt is the population size at time t (often at generation t, as for Pacific
salmon where distinct generations are observed) and A and B are parameters.

A rather more complicated curve with an evident similarity to the
logistic is the Pearl-Reed curve:

                                                         y = 
A

1 + Qe-(Rt+St2 +Ct3)
                           (12.14) 

which has the derivative:

                                                      
d y
d t    = 

y
A  (A-y)(R + 2St +3Ct2)                           (12.15) 

so that the rate of change has the logistic's dependence on y modified by
another second-degree equation in t.  This is a difficult curve to work with, but
is included here to show the range of possibilities generated through a variety
of assumptions about the rate of change and all built around the deviation
from the asymptote, y-A.

A popular curve for representing growth of individuals is named after
Gompertz, whose interest was, however, in studying mortality curves for
actuarial purposes.  The equation is:
                                                               y = Aexp(-Ce-Bt)                                     (12.16)
with derivative:

                                                                 
d y
d t    = BC ye-Bt                                         (12.17)

This is evidently a departure from the rates-of-change thus far considered. An
inspection of data may be most convenient in terms of a relative rate of
c h a n g e .
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d y
y d t   = BCe-Bt

which might conveniently be plotted on "semi-log" paper (i.e., plot ∆ y / y
against t) where it should appear as a straight line.  Referring back to
equation (12.13) it appears that the relative rate of change of the logistic
curve should provide a straight line in arithmetic coordinates:

                                                                  
d y
y d t   = B - 

B
A  y

so that the two curves (logistic and Gompertz) provide a rather distinct
con t ras t .

Growth of individual fish has been represented by a curve developed by
Von Bertalanffy, with the equation being:

                                                            y = A(1 + Ce-Bt)3                                        (12.18)

This curve has the derivative:

                                                        
d y
d t   = 3B(A1/3 y2/3  - y)                                 (12.19)

which is not so readily compared with the other forms.  However, the original
rationale for the curve does give an interesting interpretation.  Von
Bertalanffy proposed that the rate of growth of a fish depends on the
dif ference between anabol ism and catabol ism, with anabol ism being
proportional to surface area and catabolism to body weight.  If surface area is
taken as proportional to weight over length, an approximation then is weight
to the 2/3 power and we have:

                                                              
d w
d t   = k1w2/3 - k2w

where the ki  are constants, and we thus have the general form of equation
(12.19).  An interesting, and useful, sidelight is that the relationship can be
approximated in terms of the length of fish, giving an equation equivalent to
(12.10).  An alternative way to write equation (12.18) is:

                                                              y = A[1 + e-B(t-to)]3

so that to becomes a parameter replacing C.  This can also be done for the other
equations involving C as a multiplier of the exponential term.  Since to is a
constant, one can write:
                                                       e-B(t - to) = eBto e-Bt   = Ce-Bt

where C = eBto.  The advantage of using to is that it provides an explicit symbol
of the fact that this constant lets one shift the curve along the time axis.

Another quite different growth curve is the Johnson-S c h u m a c h e r
equation, which has been used mostly for tree growth:

                                                                 y = Aexp(- 
B

t+c  )                                      (12.20)
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The derivative is:

                                                                      
d y
d t   = 

By

(t+c)2
                                          (12.21) 

and this provides another variant on the relationship between rate of change,
time, and current level.

12.4 Projection models

Many population studies must deal with the situation where appreciable
numbers of individuals are removed from a population, often annually, but
also on a less-regular basis. Dealing with such situations accurately requires
estimates of abso lu te   numbers in the population and of removals. The models
used here also require that the removals take place in a relatively short time
interval, to avoid the complications of appreciable numbers of deaths from
natural causes during the removal period.

Two models may be considered:

         I        Nt = Nt-1λ  - Kt                                        (12.22)

        II        Nt = (Nt-1 - Kt)λ

In essence, model I assumes that removals, Kt, take place just before the census
at time t, while the second model assumes that removals take place just after
the census at t-1. Annual censuses are assumed in both cases. If we let S1
denote survival from t-1 to reproduction, and S2  denote survival from
reproduction, R, to removal, Kt, then Model I can be written as:

                Nt = (Nt-1S1)RS2 – Kt

so that λ = RS1S2, including reproduction and survival through two periods of
natural  mortality. However, if there is an appreciable loss between removal
and the second census, then another survival rate needs to be introduced, and
a bias is introduced.

Hence if we have estimates of absolute population size, and known
removals in a short time period, the two models offer a way to estimate λ in the
presence of removals. A very convenient way to proceed is to use a ratio
estimate. In Model I:

                                    λ̂  = 
Σ( N t +  Kt)

ΣNt-1
                                       (12.23) 

Where the summation is over successive observations. An alternative is to use
a least-squares approach. A difficulty is that the estimates of population size
are serially correlated, i.e., Nt-1 becomes Nt in the next time period. Eberhardt
(1987) examined this problem by testing various approaches on sets of
population growth data that did not involve removals. With such data it is
possible to estimate the rate of change by log-linear regression, as discussed in
Section 12.1. The ratio and least-squares (log-linear regression) estimates gave
consistent results, as shown in Fig.12.1.
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With such a high correlation between the two methods, it would app e a r
that the ratio method is likely to give useful results. A remaining problem,
however, is one of obtaining useful variance estimates, due to the serial
correlation issue. One way to approach the problem is to use jackknifing, in
which a set of estimates is obtained by dropping each of the n items from
which λ  is estimated in turn, and forming n estimates of λ  from the sets with
one item deleted. A variance is then computed from the n estimates. A
comparison (Fig. 12.2) between the jackknife variance estimates and that from
the least-squares fit suggests that the jackknife method gives comparable
estimates, but can't always be depended on.
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Fig. 12.1. Relationship between estimates of λ from the ratio method and from least-
squares. Data from Eberhardt (1987:Table 2). 1:1 line shown.
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Fig. 12.2. Comparison of estimates of variance for λ  obtained from jackknifing
(Ratio S.E.) and estimates from a least-squares fit to the data. Data from
Eberhardt (1987:Table 2). 1:1 line shown.

From the examples mentioned above, it appears that the projection
models may be quite useful in various circumstances. In some instances,
reproductive and survival data may also be available, so that an estimate of the
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value of λ  occurring without removals is also on hand. It will then be
important to know whether an estimate of λ  obtained from the removal data, as
described above, is compatible with that obtained from the Lotka-Lesl ie
a p p r o a c h .

12.5 Predator-prey models

Various simple models for predator-prey interactions have been
discussed and explored mathematically for over 70 years. The initial models
were two simple differential equations proposed by Lotka (1925) and Volterra
(1931).  Very little attention has been given to attempts to fit coefficients from
actual field data, or to use such data to assess individual components of the
models. Some prospects are explored in Section 12.6 by using data on wolves
and their prey.

In practice, we usually need to deal with "birth-pulse" populations
(Caughley 1977:6) where reproduction occurs in a relatively short period each
year. The population then decreases until the next birth period, when it again
gets a boost upwards. This sort of behavior may approximately be described by
a "step-function", i.e., by a graph looking like a stairway, perhaps with steps
of uneven size (cf. Fig. 11.1). One may thus use difference equations rather
than differential equations, and the models used here are all computed as
difference equations. Much of the recent literature is based on differential
equations, which are not appropriate for birth-pulse populations because
reproduction does not occur continuously throughout the year.

We first show the relationship of difference equations to differential
equations, using the logistic equation (previously given as eq. (12.12) but
shown here with the parameters familiar to ecologists):

                                             
dV

dt
rV

V

K
= −[ ]1                                                      (12.24)       

with K being the asymptotic value. Differential equations are often developed
as a limiting expression, where some small increment of time approaches zero.
For present purposes, we consider the increment as unity (one year, one day,
etc.) and write:

                                              
dV

dt
V V rV

V

Kt t t
t≈ − = −− −
−

1 1
11[ ]

Rearranging gives a difference equation:

                                                      V V rV
V

Kt t t
t= + −− −
−

1 1
11[ ]                                   (12.25) 

Many of the differential equations of interest in ecology have no explicit
solutions, but the logistic does:

                                  V(t)= 
K

1  +  c e- r t  
    where c = 

K - xo
xo                                   (12.26) 

with xo = initial value, here taken to be unity.
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The logistic model for population growth assumes continuous growth, at
an instantaneous rate, r. If we take r = 0.8 and K = 30,000, then we can plot
eq.(12.26) for, say, 30 years. To approximate it with difference equation (12.25),
we need to subdivide the year into increments. If we use 20 such increments,

then r1 =  
r
20   =  

0.8
20   = 0.04.  Fig. 12.3 shows, the difference equation provides a

reasonable approximation to the differential equation, with as few as 20
increments per unit of time.

Fig. 12.3. Graph of a logistic equation (line) compared to values (points)  from a difference
equation version of the underlying differential equation.

Usually, we expect the behavior of the predator population to depend on
the abundance of the prey, and it also may be subject to removals by man. The
terms "prey" and "predator" often refer to animals, but the models can also
serve to represent herbivores and vegetation. Consequently, we use the letters
H for herbivores or predators, and V for vegetation or prey. The prey equation
usually contains provision for self-limitation or a "density-dependence" term,
often the logistic model given above, and then a term representing removals
by the predators. This is termed the "functional response" and is denoted below
as a generalized function, F(H,V). The predator equation contains a term
showing the way in which the predator supposedly responds to prey
abundance, and this is termed the "numerical response" and denoted by
G(H,V). It is worthwhile to quote the original definition of these terms
(Solomon 1949) inasmuch as some discussions in the literature appear to
deviate appreciably from that definition. Solomon uses "natural enemy" to
cover both predators and parasites:

"to be density-dependent, the enemy must respond to changes in numbers of
the host .... The nature of this response is commonly twofold. First, there must
be a functional response to (say) an increase in the host density, because of the
increased availability of victims: as host density rises, each enemy will attack
more host victims, or it will attack a fixed number more rapidly. A frequent,
but not invariable result of this is an increase in the numbers of the enemy (a
numerical  influence) due to an increased rate of survival or of reproduction,
or of both; this may or may not be sufficient to produce an increase in the
proportion of enemies to the increasing hosts."
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The two generalized equations are:

                                         
dV

dt
rV

V

K
HF H V= − −[ ] ( , )1                                          (12.27) 

                                
dH

dt
HG H V= ( , )                                                               (12.28) 

Where F(H,V) represents the “functional response” and G(H,V) is the
“numerical response”. In the early use of these equations, it was assumed that
the functional response was proportional to the number of predators present,
i.e., that F(H,V) = α V so that the equation becomes:

                                                    
dV

dt
rV

V

K
VH= − −[ ]1 α                                          (12.29) 

with the last term often interpreted as depending on an "encounter rate" and
thus the product of the numbers of H and of V. The numerical response has
been written as G(H,V)= -d + β V, and this can be interpreted as a constant
mortality rate of predators (d) plus a reproductive rate depending on prey
abundance (βV), with the equation then becoming:

                                                    
dH

dt
V d H= −( )β                                                    (12.30) 

There are a variety of other forms of functional and numerical responses,
with a large literature dealing with theoretical interpretation of these terms.
Various aspects of the theory appear in May (1981), and some of these are
discussed in Section 12.7 below.

With this background, we can take a look at a system variously used to
describe vegetation-herbivore interactions (Caughley 1976, 1977, Caugh ley
and Lawton 1981), in which the herbivore has been described as an "ungulate"
or as typifying "white-tailed deer colonizing a mosaic of grassland and forest"
(Caughley and Lawton 1981). In the several examples, the relevant equations
are given as differential equations, which are here translated to difference
equat ions:

                                 Vt = Vt-1 + rm1V t-1(1 - 
V t-1

K  ) -c1Ht-1(1 - e-d1V t-1 )       (12.31)

                                  Ht = Ht-1[1 -a2 + c2(1 - e-d2V t-1 )]                                     (12.32)

The exponential terms, (1 - e-diV t-1 ) , are supposed to adjust the herbivore's
intake of vegetation and population growth rate according to density of
vegeta t ion .

Plots of vegetation and herbivore density show rather dramatic changes
in the first 20 years, and come nearly to equilibrium in 50 years (Caugh ley
1977:Fig. 9.6, Caughley and Lawton 1981:Fig. 7.3). If we plot the difference
equations (12.31) and (12.32) using the constants given by Caugh ley
(1977:129), we get very pronounced and continuing oscillations (Fig. 12.4).
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Fig. 12.4. Caughley's (1977) vegetation-herbivore system computed as a difference
equation in which reproduction occurs annually.

Why the difference? The answer lies in the way in which the equations
interpret reality. The difference equations assume reproduction occurs just
once a year for the herbivore and for vegetation. The differential equations
assume reproduction goes on throughout the year. Caughley (1977:130)
remarked that "the population has been grown in a programmable desk
calculator by estimating growth curves twenty times per year and adding on
the appropriate increment each time". However, ungulates don't reproduce 20
times a year, behaving instead like the difference equations, producing young
once a year. Since vegetation does grow continuously over part of the year, a
somewhat different model presumably could be used for vegetation. If we
follow Caughley's prescription cited above, using difference equations and
rates divided by 20, then the difference equation model reflects  his Fig. 9.6
reasonably well, but the time scale is now multiplied by 20. In effect, if
reproduction occurs only once a year, then the curve shown by Caugh ley
takes something like 500 years, not 50 years.

The main point to be made here is that one needs to be sure that the
equations used do reflect the biology of the situation at hand. Some other
problems with the system discussed above are described by Eberhardt (1988).
Another example concerns an effort to consider the role of interactions
between species in the management of multispecies fisheries. May et al. (1979)
used differential equation models to il lustrate the possible impacts of
commercial harvesting of the main food supply (krill) of baleen whales in
Antarctic waters. They stated that "A crude Lotka-Volterra form of predation is
assumed, with prey being consumed at a rate proportional to their density,
a N1, per predator".  Written as a difference equation, this gives:

                                  Vt= Vt-1 + r1V t-1(1 - 
V t-1

K  ) -c1Ht-1V t-1                            (12.33)

while their predator equation is:

                                    Ht= Ht-1 +   r2Ht-1[ 1 - 
Ht-1
aVt-1

  ]                                          (12.34)
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The problem is that baleen whales are very unlikely to have evolved to each
take a proportional share of the available prey. Instead they quite clearly take
as much prey as needed to supply the individual whale, so that the last term in
eq. (12.33) becomes c1H t-1. Such a change makes an appreciable difference in
trend of the predator and prey curves, and conclusions about equilibrium
points, relative yields, and the like, as indicated in Eberhardt (1988).

12.6 A wolf-ungulate model

As noted above in connection with eq. (12.33), it is unlikely that an
effective large predator will take a proportional share of the available prey. A
further modification of eq.(12.33) is available in the form of the generalized
logistic in which the growth rate may not begin to decline appreciably until
the population approaches its asymptotic value (K). With these modifications,
eq. (12.33) becomes:

The general form of eq.(12.34) has been recently popular under the label of
"ratio dependence" (Matson and Berryman 1992). Eberhardt (1997) used data on
moose and caribou from the literature to show that the functional relationship
very likely can be reduced to the constant, c, of eq.(12.35). It is worth noting
here that the equilibrium values (obtained by setting Ht = Ht-1 and Vt = Vt - 1
a r e :

  V K
ca

r
z= −[ ] /1

1

1         and         H = aV                          (12.36)  

The best available data are those for moose. Eberhardt (1997,2000) used
data from the literature to estimate c in eq. (12.35) as 2 moose killed per wolf
per 100 days in winter, with an annual rate of a little less than 7 moose per
wolf. Eberhardt (1998) calculated a maximum rate of increase for moose as λ =
1.38. The parameter z is not well established, but was used as z = 5. Carrying
capacity (K) depends on the specific population considered and thus may be
selected arbitrarily here. For eq. (12.34) the maximum rate of increase for
wolves was estimated as λ = 1.48 (Eberhardt 1998) and the ratio-dependence
constant as a =1/20 wolves/moose (Eberhardt and Peterson 1999). Using these
constants, and starting with a moose population of 30,000 (at carrying
capacity, K) and a small initial wolf population (20) gives the results of Fig.
12.5, which can be compared to Fig. 12.4. A small initial fluctuation soon
disappears and both moose and wolves settle down to steady-state numbers at
the assumed ratio of 20 moose per wolf.

An obvious feature of Fig. 12.5 is the absence of the oscillations that
were induced in the model of Fig. 12.4 by the choice of mathematical forms for
the functional and numerical responses. There is a good deal of evidence that
such oscillations do in fact occur in insect populations with their generally
high rates of increase, but wolves and their prey have much lower rates of
increase so that the models derived for insects and other species with high
rates of increase ought not to be arbitrarily assumed to be appropriate as
seems to have been done in the literature.

V V rV
V

K
cHt t t

t z
t= + − −− −

−
−1 1 1

1
11[ ( ) ]                           (12.35)  
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Fig. 12.5 Trend of moose and wolf populations using Eq. (12.34) and (12.35) with the
parameters given above.

Another carryover from entomological studies is the notion of a “total
response” model in which the predator population is assumed to respond
instantaneously to changes in prey abundance. Using such a model one can
conveniently depict predator abundance as a function of prey abundance and
produce a variety of models along the lines of Messier (1994). However, wolves
do not respond instantaneously to fluctuations in prey numbers, and hunting,
trapping, and “control” actions have resulted in non-equilibrium numbers of
predator and prey in most real-world situations. A realistic approach thus
needs to depend on equations like (12.34) and (12.35) that show non-
equilibrium conditions. The “total response” model traces back to Ho l l ing
(1959) who warned about the consequences of assuming that model as follows:
“The method is an over-simplification, since predator density is portrayed as
being directly related to prey density. Animal populations, however, cannot
respond immed ia t e l y  to changes in prey density, so that there must be a delay
of the numerical response” and “the total response obtained when prey or
hosts are steadily increasing will be different than when they are steadily
decreasing. The amount of difference will depend on the magnitude and
amount of delay of the numerical response, for the functional response has no
element of delay”.

An interesting aspect of the model of eq. (12.34) and eq. (12.35) is that it
can be fit directly to actual data, using multiple regression. An attempt to do so
for data on Isle Royale moose and wolves appears in Eberhardt (1998:Fig. 2).
Unfortunately, there are few data with enough years of observations on both
prey and predators to make such an approach widely applicable and both
moose and wolves on Isle Royale appear to have been subjected to influences
not considered in the simple model. This illustrates the major dilemma in
model-building in ecological studies. Usually only a few parameters can be
unambiguously estimated from actual data, forcing the use of simple models
that cannot accommodate unexpected changes due to environmental or other
factors. A further possible difficulty with the simple model of eq. (12.34) is the
assumption that wolf abundance is limited solely by moose abundance through
the ratio-dependence parameter (a). In reality, wolf packs defend more or less
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exclusive territories, a factor that may limit their abundance in the presence
of high prey densities.

12.7 Assessing differential equation models

This Section is provided to supply an indication of how differential
equation models for predator-prey studies can be evaluated. The basic problem
is that most such equations cannot be “solved”, i.e., integrated. Section 12.5
used the logistic equation as an example of a differential equation that can be
solved directly and showed that the difference equation analog can be used to
provide a good approximation to the behavior of the differential equation. This
is the simplest approach for studying differential equations when direct
solutions are not possible. Quite a bit can be learned about the equations by
plotting trend of the populations on a diagram showing the “isoclines”. We can
illustrate the basics by considering a modification of the original predator-
prey equations due to Lotka (1925) and Volterra (1931). The original equations
a r e :

                                     

dV

dt
rV bVH

dH

dt
cVH dH

= −

= −

1

where V denotes prey and H denotes predator as before. According to May
(1981) “This system has pathological dynamical properties…”, and we will not
consider the equations in the above form further here. A major problem from
the biologist’s point of view  is that, when no predators are present (H = 0), the
prey population will grow continuously, without limit. Hence early workers
made the modification given by eq. (12.29) which introduces the logistic
equation as a control on the prey rate of increase if no herbivores are present,
i.e.,

                                
dV

dt
rV

V

K
bVH= − −1 1[ ]

One approach to studying differential equations of this type is to plot the trend
of equilibrium solutions, i.e., let dV/dt=0, and thus:

                                       H
r

b

V

K
= −1 1[ ]

so that, given values of the constants, one can plot H against V as a straight
line. The solution of the predator equation is just V = d/c, a constant, and thus a
vertical line on the plot of H against V. The intersection of the two lines
(known as isoclines) provides an “equilibrium point” or the joint solution of
the two equations. This is the point at which the predator and prey populations
settle down to constant values (equations are known that cycle endlessly, and
one example will be given later in this Section).

To go further, we need to convert the differential equations to
difference equations. This is done by replacing dV/dt by ∆ V / ∆ t where ∆
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represents a small increment. In the case of approximating the logistic
equation in Section 12.5, we could make this increment as small as we like, but
the predators and prey mainly considered here reproduce only once a year, so
the time increment needs to be one year, i.e., ∆ t=1 and ∆V = Vt - Vt-1, or the size
of the prey population at time t minus its size at time t. The difference equation
for the prey population then becomes that of eq. (12.33) and the predator
equation is:

                                     H H d c Vt t t= − +− −1 2 11[ ]                                 (12.37)    

This is the same as equation (12.30) but now is written as a difference equation.
These equations are readily plotted in EXCEL, using values supplied here. For
convenience in making comparisons and for discussion purposes, parameters
used in the following examples are standardized so as to give roughly
equivalent equilibrium values and to approximate values for moose and wolves
used by Eberhardt (1997, 1998) and Eberhardt and Peterson (1999). The
equilibrium values are approximately 4000 moose and 200 wolves, while initial
values are 8000 moose and 50 wolves. Where an asymptotic prey value is
needed, it is set at K = 10,000. Maximum rate of increase for prey is r1 = 0.38 and
r 2  = 0.48 for predators. For eq.(12.33) the take by wolves is assumed
proportional to number of prey present. This is not a very realistic assumption
as wolves generally are likely to be capable of taking what they need as
suggested in Section 12.6, in connection with eq. (12.35). In that equation, a
constant rate is assumed and is set at c = 5 below. For comparability we thus
assume that c1V = 5 in eq. (12.33) where V is the equilibrium moose population,
so that c1 = 5/4000 = 0.00125. In the prey equation [eq. (12.37)] d is regarded as
an annual wolf mortality rate and set at d = 0.40, while c2 denotes a kind of
reproductive rate, being the gain realized from consuming moose. At
equilibrium we have c2V = d, i.e., the gain to the wolf population just offsets
loss (d), so we set c2 = 0.40/4000 = 0.0001.

The various equations are readily computed and plotted in EXCEL, using
the values supplied here. One starts out with initial conditions for predator and
prey, V0 =  8000 and H0 = 50, and uses the parameters given above. Thus in
eq.(12.33) the observation for prey at time 1 is:

V V rV
V

K
c V H1 0 1 0

0
1 0 01 8000 0 38 8000 1

8000
10000

0 00125 8000 50 8108= + − − = + − − =[ ] . ( )( ) . ( )

while the predator number [eq.(12.37)] is;

H1 50 1 0 4 0 0001 8000 70= − + =[ . . ( )]

and at time 2 the prey number is:

V V rV
V

K
c V H2 1 1 1

1
1 1 11 8108 0 38 1

8108
10000

0 00125 8108 70 7981 5= + − − = + − − =[ ] . [ ] . ( ) .

Subsequent  terms are computed in the same manner, and a plot of predator
and prey can be obtained as in Fig. 12.6, which shows the course of the
populations over time. We can also plot predator numbers against prey
numbers along with the isoclines H =304[1-304V/10000] and V = 0.4/0.0001=
4000 getting Fig. 12.7. In this example, the two populations oscillate over more
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than 100 years and ultimately settle down at the intersection of the isocl ines,
i.e,, 4000 prey and about 180 predators.

Fig. 12.6 Course of predator and prey populations calculated from equations (12.33) and
(12.37).

Fig. 12.7  Diagram showing isoclines (lines). Course of populations is shown by
the spiral 0f points starting near initial values (50 predators, 8000 prey) and
ending  near junction of isocline lines (equilibrium values).

The dramatic fluctuations generated by the above equations have been
observed for insect populations, and might well be invoked for some
vertebrate populations that show cycles of varying lengths, but it is not
established as yet that such observed cycles are necessarily due to predator-
prey interactions. It is thus useful to look at a few equations that do not vary so
dramatically. One set is that given by eqs.(12.33) and (12.34) and used by May et
al. (1979) to model Antarctic food chains. A diagram (Fig. 12.8) showing
isoclines for these equations shows only one simple curve  to the equilibrium
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point from the initial numbers (8000 prey and 50 predators), and the
population plots (Fig. 12.9) show essentially one cycle before settling down.

Fig. 12.8 Isoclines and trace of points for equations (12.33) and (12.34).

Fig. 12.9  Population trace for equations (12.33) and (12.34).

In connection with equations (12.33) and (12.34) it was remarked
(Section 12.5 ) that the last term in eq.(12.33) very likely should not include
the prey, i.e., that large predators like baleen whales and wolves most likely
take what prey they need rather than taking prey in proportion to its
abundance. Thus the modified equation was used as eq. (12.35) in the wolf-
ungulate model of Section 12.6, with one further modification, which was to
change the logistic term in the prey equations above to a “generalized
logist ic”:

                                                      [ ( ) ]1 1− −V

K
t z

where the exponent, z, is equal to or greater than unity (set at unity it gives
the usual logistic term). This modification is essential in that it gives prey
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populations a much more nearly constant rate of increase until they approach
the asymptote. If the rate of increase is permitted to decrease linearly as in the
usual logistic model, then prey populations cannot stand much in the way of
predation. The population course for this set of equations [(12.34) and (12.35)]
is very much the same as in Fig. 12.9, but the isocline lines now differ (Fig.
12.10), in that the equilibrium solution for the prey equation produces a curve
which is a second degree polynomial for z=2, but would be a third degree
polynomial if z=3, and so on. Note that using z=2  has increased the equilibrium
values substantially, due to  use of the generalized logistic rather than the
ordinary logistic which was used in producing Fig. 12.8

Fig. 12.10 Isocline lines and population plot for equations (12.34) and (12.35).

Another version of the prey equation may be considered at this point.
This incorporates the widely-used functional relationship originated by
Holling (1959), and usually described as his Type II curve. This gives rise to the
following prey equation:

                                     V V rV
V

K

mV

w V
Ht t t

t t

t
t= + − −

+− −
− −

−
−1 1 1

1 1

1
11[ ] [ ]                       (12.38)   

The functional relationship contains two parameters, m and w, and gives rise
to a curvilinear relationship replacing the very simple constant, c, of e q .
(12.35). The parameter m was set at 5 and w = 1000. The population trend is
again a simple curve (Fig. 12.11) and the isoclines are much like those of Fig.
12.10.  The Type II curve is not very much different from an exponential
curve, as can be shown by series expansions:
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When V is large, as it is for the most part here, these two expressions give very
similar curves. Using m=5 and w=1000 as used here, the Type II curve is much
the same as an exponential with the same parameters (Fig. 12.12). The
agreement is worth noting mostly by way of suggesting that one not place too
much faith in the derivations of the Type II curve found in the literature.

Fig. 12.11 Isoclines and population trend for equations (12.38) and (12.34).

Fig. 12.12 Comparison of Hollings Type II curve and an exponential f u n c t i o n
with the same parameters.

Thus, although we have used a different model for prey, the general
results are much the same as for 3 earlier cases. However, if we follow what
seems to be the current trend in the literature and use the same curve for
functional and numerical response, then a very different result is obtained,
i.e., sustained oscillations of the form exhibited in Fig. 12.4.  The prey equation
now is:
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                             H H
c mV

w V
dt t

t

t

= +
+

−−
−

−
1

3 1

1

1[ ]                                                 (12.39) 

The combination of eqs.(12.38) and (12.39) yields dramatic and continuing
oscillations and does not appear to converge on equilibrium values (Fig. 12.13).
Also, different starting values of predator and prey give different results.
Hence  these curves are not considered further here. Readers interested in the
theoretical basis for such curves should consult May (1981) and the current
literature on predator-prey models. Their practical utility remains to be
demonst ra ted.

Fig. 12.13. Trace of points generated by eqs. (12.38) and (12.39).

From the results considered thus far, it appears that the ratio
dependence model for predators [eq.(12.34)] yields rather stable results when
combined with various models for prey abundance, and that the prey equation
used for moose and wolves [eq.(12.35)] may be presently most useful for actual
data on large vertebrate predator-prey studies. However, most ungulate
populations are preyed on by hunters, as well as by wolves. Consequently, it is
worthwhile to consider a modification of eq.(12.35) that brings in removals by
h u n t e r s :

                                     V V rV
V

K
cH Rt t t

t z
t= + − − −− −

−
−1 1 1

1
11[ ( ) ]                                 (12.40) 

Here, we assume a constant annual harvest of, say, moose by hunting, set for
convenience at 290 individuals per year. Utilizing eq.(12.34) for predators,
population trends are qualitatively much the same as before with the
populations approaching equilibrium in about 20 years. The isocline diagram
(Fig. 12.14) differs, however, in several respects from Fig. 12.10, which
represents the situation without hunting removals. The equilibrium values are
substantially lower with both prey and predator numbers reduced, and the
isocline lines just intersecting rather than crossing. Perhaps the most
interesting and instructive result comes if we increase the hunter harvest just
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slightly—from 290 per year to 294 per year. This results in a crash of both
populations (Fig. 12.15), after a long, rather slow decline. Of course, if the
harvest is set a little larger, the crash occurs sooner. These equations should
not be taken as useful direct models of actual populations, inasmuch as they
are very sensitive to small changes in parameters. In reality, wolves will most
likely “switch” to alternate prey if possible or leave the area entirely. The
general picture is well-illustrated by the fate of the Nelchina caribou herd in
Alaska, which became very large during wolf control, but ultimately crashed
when wolves regained high numbers and a largely fixed hunting harvest was
maintained. Some details of this event were reported by Eberhardt and Pitcher
(1992). A very considerable controversy about likely causes is discussed in
references cited in that paper.

Fig. 12.14. Isocline lines and population plot for equations (12.34) and (12.40).

Fig. 12.15  Trend of predator and prey populations when hunter harvest is
high enough to ultimately result in a crash of both populations.

Up to this point, we have considered some problems in predator-prey
models (Section 12.5), looked briefly at a wolf-ungulate model (Section 12.6),
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and then delved deeper into the various differential equation models in the
present Section. A tentative conclusion from the review here is that the
equations of Section 12.6 seem to “behave’ reasonably well in comparison with
some popular versions. It may thus be desirable to provide more detail on the
evidence supporting that model. For convenience the underlying difference
equations are repeated here.

The prey equation is:

and the predator model is:

                                    Ht= Ht-1 +   r2Ht-1[ 1 - 
Ht-1
aVt-1

  ]                                          (12.34)

while the equilibrium conditions are:

                                          V K
ca

r
z= −[ ] /1

1

1         and         H = aV                          (12.36)  

Definitions and some likely parameter values were given in Section 12.6. Here
we look briefly at the data supporting these models and the parameters.

Evidence for the constant, c, in eq.(12.35) has been collected from a
number of sources (Fig. 12.16) that suggest the moose kill/wolf/100 days to be
nearly constant over a wide range of moose densities.

Fig. 12.16. Data on moose kill per wolf per 100 days in winter from Eberhardt (2000) with
data (solid square symbols) from Hayes and Harestad (2000) added.  Solid circles
represent individual year data from Isle Royale and open circles show data of Messier
(1994: Table 2). Solid line shows constant rate assumed here, from an average that does not
include two very low and one very high point. Broken line shows fit of Type II curve.

Some lower kill rates at low moose densities might be taken as evidence for the
Type II model used in eq. (12.38). That model has been fitted to the data with
non-l inear least-squares as shown in Fig. 12.16. As was noted in connection
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11[ ( ) ]                           (12.35)  
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with Fig. 12.11, introducing the Type II curve does not appear to change
behavior of the equations significantly. Arbitrary values of the parameters m
and w were used in eq. (12.38) to give results compatible with most of the other
equations. Using actual data now gives quite different values, namely m = 2.38
and w =0.082.

The other important evidence for the model suggested here has to do
with the ratio dependence constant, a, in eq. (12.34). The arguments for this
model were described in more detail by Eberhardt and Peterson (1999). A
possible improvement offered here is that the underlying relationship
between rate of increase for wolves (λ ) and the wolf/moose ratio may be
curvil inear, with an intercept at a somewhat lower wolf/moose ratio,
changing the equilibrium value from about 20 moose/wolf to 24 moose/wolf
(Fig. 12.17).

Fig. 12.17. Finite rate of increase (λ) of wolf populations vs. observed wolf-moose ratios.
The broken line depicts a second degree polynomial fitted to the data, and the short
regression line has been fitted to the data from the 7 highest moose-wolf ratios to
approximate what may be an underlying strongly curved relationship. Sources of the data
appear in Eberhardt (1998) and Eberhardt and Peterson (1999).

The best support for eq. (12.35) comes from the trend of the moose
population on Isle Royale, Michigan (Fig. 12.18). In the early stages of the
study it appeared that the wolf population was controlling moose abundance,
with the two populations approaching equilibrium by about 1979  (E b e r h a r d t
and Peterson 1999). However, the wolf population “crashed” in 1980, very
likely in consequence of the arrival of a virus (parvovirus) in the population.
Moose numbers then increased steadily and the moose population ultimately
also crashed in a severe winter. An epizootic of winter ticks (Delgiudice et al.
1997) interrupted the steady growth of the moose population in 1988, so
eq.(12.35) has only been fitted  up to that point.
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 Fig. 12.18. Trend of the Isle Royale moose population. Solid points and a solid line show
moose abundance through 1988 and the fit of eq.(12.35) to the data. Open symbols show
estimated moose numbers from 1989  onwards and the estimates are connected by a dashed
line to show the recent trend. Wolf density is shown by a broken line.

12.8 EXERCISES

12.8.1 Non-linear least-squares. The following are the data from Fig. 9.3
(muskox population growth curve). Fit the loglinear regression model of e q .
(12.5) using the analysis toolpak of EXCEL. Then explore non-linear least-
squares fitting of the same data by making a table bordered by values of the
two parameters and calculating the sums of squares for trial values of the
parameters. Calculate the sums of squares from:

                                                S = Σ [y
i
 - (a exp(bxi))]2

You will need trial values of a and b, and these can be taken from the loglinear
fit. It can be a tedious undertaking unless you start out with trial values, put
the sum of squares in a table and border these with sums of squares from the
adjacent values of a and b. Use 3 decimal places for b and 2 digits for a (don’t
forget that the loglinear fit gives log a as the intercept, so you have to
transform back). You can map the sums of squares and trace the minimal sums
of squares until you find one that is the lowest in its region. Sometimes this
“brute force” approach is useful if you don’t have ready access to a computer
program that provides nonlinear least-squares estimates. If you do have access
to such a program, use it to check your results.
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5 100
6 116
7 126
8 143
9 181

1 0 206
1 1 256
1 2 293
1 3 353
1 4 406
1 5 467

A plot of expected values from loglinear regression and from the nonlinear
least-squares fit is:

The solid line is the fit from loglinear regression. The nonlinear fit (dashed
line in the figure) does seem better for the higher counts but experience with
a variety of population growth data suggests using the loglinear fit if, as is
usually the case, one is mainly interested in studying rates of growth.

12.8.2 Use parametric regression bootstrapping (Ch. 2) to calculate
approximate 95% confidence limits on the population growth rate obtained by
loglinear regression in Exercise 12.8.1 and compare them with the limits
obtained from the regression program in EXCEL.

12.8.3 Plot the rate of change for the logistic equation [Eqs.(12.12) and (12.26)]
using the approximation given after eq.(12.26) which was used to make the
plot of Fig. 12.3. This is a serious limitation for use of the logistic equation for
the large vertebrates, as their rates of change do not seem to behave this way.
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12.8.4 An alternative to the logistic is the “generalized logistic” used in eq.
(12.35). Note that it was used with z=1 to approximate the ordinary logistic for
Fig. 12.3. Repeat the plot of Fig. 12.3 (in EXCEL), and make companion plots with
z=2,5, and 11. Plot the rate of change and compare it with the rate of change
obtained in Exercise 12.8.3. It is this nearly constant rate of change over much
of the range of population growth that typifies the large vertebrates.

12.8.5  A set of data on feral horses (Garrott and Taylor 1990) is given below.
Use Model I (Eqs. 12.22) and the ratio estimator of eq. (12.23) to estimate λ  using
EXCEL Compare your results with the following plot.

YEAR OBSERVED REMOVALS
1978 8 6 0
1979 104 0
1980 123 0
1981 150 7
1982 181 0
1983 155 5 0
1984 142 2 0
1985 153 1 3
1986 152 2 7

Plot of feral horse data showing removals and fitted curve for Model I.

12.8.6  Using EXCEL and the constants given in Section 12.6 reproduce the
results of  Fig. 12.5 with eqs. (12.34) and (12.35). You can use this approach to
reproduce many of the models given in the literature.
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